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Muitifractality in Elastic Percolation 
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We present numerical results on the distribution of forces in the central-force 
percolation model at threshold in two dimensions. We conjecture a relation 
between the multifractal spectrum of scalar and vector percolation that we test 
for central-foce percolation. This relation is in excellent agreement with our 
numerical data. 
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1. I N T R O D U C T I O N  

Scalar transport properties in the framework of percolation are now well 
understood. In particular, the multifractal spectrum of the distribution of 
currents has been extensively studied. (1-3) Vector transport properties far 
less known. Two classes have been considered in the past: 

Class ! (referred to as AE in the following/4) Systems having angular 
elasticity such as bond bending (e.g., in the beam lattice model) or angular 
springs. 

Class II (referred to as CF in the following)/5~ Systems where the only 
microscopic interactions are central force. 

In the first class, systems are critical at the connectivity (or scalar) 
percolation threshold. Most studies of this problem have dealt with the 
scaling of the elastic modulus E, either directly ~4'6) or through a related 
property (density of states of vibrations, ~7) viscoelastic behavior, etc.). E 
vanishes when the concentration of bonds p approaches the threshold Pc as 
E oc (p--pc) ~. Here T is very different from the scalar transport exponent t 
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(in two dimensions, t = 1.30 -+- 0.01, whereas v = 3.96 _+ 0.04(67). However, it 
has been suggested (8) that ~ could be related to t through the equality 
z = t + 2v, where v is the correlation length exponent. Although only an 
inequality has been shown, (9) the equality seems fulfilled numerically. In 
this paper, we generalize this conjecture to the complete multifractal 
spectrum of the AE percolation model. 

The second class, CF percolation, has been much more controversial. 
Different numerical results exist in the literature suggesting that this 
problem belongs to a new universality class, (1~ distinct from that of 
percolation, or even to no universality class at all. (11) In previous 
studies, (12) we have obtained, for different critical exponents, a good 
agreement with the values obtained for AE systems. We present here the 
multifractal spectrum of CF percolation lattices, extracted from extensive 
numerical simulations. Assuming now the indistinguishability of CF and 
AE critical properties, we verify that our conjectured relation between 
scalar and vector multifractal spectra agrees with our data in the CF 
percolation model. 

2. MULTIFRACTALITY AT THE PERCOLATION THRESHOLD: 
SCALAR CASE 

At the percolation threshold, the current distribution in random 
resistor networks is multifractal. (1'z13) This means that each moment of it 
scales with an independent exponent x(n), i.e., 

<i"> = ~  Iik[ n oc L x(n) (1) 
k 

where i~ is the current flowing through bond k, for any given boundary 
condition, and L is the size of the network. This expression is valid in the 
thermodynamic limit (L tending to infinity). 

The scaling properties of the moments imply certain scaling features of 
the current distribution itself. This connection is given by relating the so- 
called f versus ct function, to be defined below, to the scaling exponents 
x(n). Let N(i, L) e be the number of bonds in a lattice of size L that carry a 
current between i and i(1 + e), where e is a small, fixed number. If this 
current distribution histogram N(i, L) is rewritten L s(i'L) by defining the 
function f ( i , L ) = l o g [ N ( i , L ) ] / l o g L ,  the existence of a hierarchy of 
exponents x(n) implies that f ( i ,  L) plotted versus ~(i, L ) = l o g / / l o g  L will 
be independent of L for large L. 

The nth current moment gets its contribution from the current dis- 
tribution histogram at the point where df(c~)/d~ = -n .  If the corresponding 
scaled current is called ~(n), the following relation exists between this 



Multifractality in Elastic Percolation 761 

current and the scaling exponent x(n): dx(n)/dn = ~(n). The shape of the 
scaled histogram f(c0 can be related to the moment scaling exponent 
through f(c~(n))=x(n)-n~(n). One may interpret f(c~(n)) as the fractal 
dimension of the set of bonds that contribute to the nth moment. 

The fact that numerical simulations of random resistor networks can 
only be done on moderate-size lattices imposes the averaging over an 
ensemble of realizations. Some controllable quantity must be kept constant 
for each realization of the ensemble. The choice of this quantity defines the 
ensemble. For  example, one defines the constant-current ensemble when the 
total current flowing into each lattice is the same, the constant-dissipation 
ensemble when the total energy dissipated in the resistors is kept constant, 
and the constant-voltage ensemble when the voltage difference across each 
lattice is identical. We refer to those three ensembles with subscripts c, e, 
and v, respectively. Among the three quantities introduced above f(n), 
c~(n), and x(n), only f (n )  is independent of the ensemble chosen. However, 
exchanging ensembles corresponds to a translation of the c~ axis in the f-c~ 
plane. The relation between the above-mentioned ensembles is obtained in 
expressing in Eq. (1) the normalization of a given ensemble assuming that 
the currents are obtained in a different ensemble. (3) Some elementary 
algebra (see Appendix) gives 

Xv(n) = xo(n) - nx~(2) (2) 

c%(n)=c%(n)- xo(2) (2') 

and 
Xe(n) = xc(n)-  (n/2) xc(2) (3) 

~ (n )  = C~c(n) - (1/2) xc(2) (3') 

The "natural" ensemble for the random resistor network is the con- 
stant-current one. In particular, for n = 0, xc(0) is the fractal dimension of 
the backbone, and for n = 2, x~(2) is t/v (t is the conductivity exponent, v is 
the correlation length exponent). The exponents xc(n) are listed in Table I. 
As can be seen, these exponents converge toward the value 1Iv = 3/4 as n 
tends to infinity. (14) This value is nothing but the fractal dimension of the 
cutting bonds (or singly connected bonds)/15) 

3. M L I L T I F R A C T A L I T Y  AT  T H E  P E R C O L A T I O N  T H R E S H O L D :  
V E C T O R  CASE 

Let us consider now AE systems at the usual connectivity percolation 
threshold. For  simplicity, let us assume, for instance, that we are dealing 
with a beam lattice. Each bond is a beam clamped to its neighbors at the 
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Table I. Estimates of Scaling Exponents 

Moment order n xc(n ) yf(n) yf(n)* yee(n) Yee(rt) * ya(n) ya(n)* 

0 1.62 1.65 1.62 1.65 1.62 1.65 1.62 
1 1.19 2.12 2.19 0.67 0.70 -0.77 -0.78 
2 0.98 4.0 2.98 - 0.03 0.00 - 2.9 - 2.98 
3 0.86 b 3.86 -0.57 -0.61 -4.6 -5.07 
4 0.78 b 4.78 --1.02 --1.17 --6.4 --7.13 
5 0.76 b 5.76 --1.43 --1.68 b --9.13 

a Scaling exponents for: the random resistor network in the constant-current ensemble, x~(n); 
the CF percolation model in the constant-force ensemble, yf(n) (measured value); the CF 
percolation model in the constant-force ensemble, yf(n)* [expected value, Eq. (8)]; the CF 
percolation model in the constant-energy ensemble, y~(n) (measured value); the CF per- 
colation model in the constant-energy ensemble, yeo(n)* [expected value, Eq. (8')]; the CF 
percolation model in the constant-displacement ensemble, yd(n) (measured value); the CF 
percolation model in the constant-displacement ensemble, ya(n)* [expected value, Eq. (8")]. 

b The data are too ill behaved to allow any reliable determination of the exponents y(n). 

nodes of the lattice. A beam is, in general, subjected to different stresses: 
axial and transverse forces, and torques applied at its ends. Therefore, the 
procedure described above to obtain the multifractal spectrum through  
rescaled his tograms is not  straightforward. We propose  to construct  
histograms from a scalar quanti ty which is representative of the stresses 
each beam is submitted to: namely, the elastic energy. More  precisely, in 
order  to be able to compare  easily with other cases where the natural  quan-  
tity is either the current (scalar case) or  the axial force (CF case), we may  
study the distr ibution of x/e-kk, where e k is the elastic energy of bond  k. 

Now,  as usual, the second momen t  of  the distribution Zk  ( x ~ )  2 is nothing 
but the total elastic energy of the lattice. For  the central force case, the 
distribution of ~ is strictly equivalent to the distribution of forces. 

This multifractal formalism can readily be applied to elastic 
percolation. The nth momen t  is given by 

m~,) = ~ (x/r~k)" oc L y~") (4) 
k 

where ek is the energy stored in the k th  bond. There are three ensembles of 
elastic networks corresponding to the three previous ensembles for the 
r a n d o m  resistor network:  the constant-displacement,  the constant-energy,  
and the constant-force ensembles. We will refer to these with the subscripts 
d, ee, and f, respectively. The scaling exponents corresponding to these 
ensembles are related by equat ions similar to Eqs. (2) and (3): 

yd(n) = y f ( n ) -  nyf(2) (5) 

~d(n) = c~r(n) -- yf(2)  (5') 
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and 
ye~(n) = yr(n) -- (n/2) yf(2) (6) 

~ee(n) = ~f(n) --  (1/2) y f (2 )  (6 ')  

In particular, for n = 0, yf(0) is the fractal dimension of the backbone, 
and for n = 2, yr(2) is z/v (z is the critical exponent of the elastic modulus, v 
is the correlation length exponent). 

4. CONJECTURE ABOUT THE RELATION BETWEEN SCALAR 
AND VECTOR CASES 

For AE systems, the force-carrying part of the lattice, i.e., the 
backbone, can be schematized by the nodes-links-blobs picture (see, e.g., 
ref. 14). Within this framework, it is easy to see that most of the elastic 
energy of the structure is due to torques that will be of the order of g_f), 
where f i s  the typical force acting on a macrobond of length ~, and ~ is the 
correlation length (mesh size of the nodes-links-blobs lattice). Moreover, 
the propagation of torques on a topologically one-dimensional system is 
identical, for each component, to that of a current. The combination of 
these two facts leads naturally to the relation (g) 

z = t + 2 v  (7) 

that relates the scaling of the second moment in AE systems and in the 
scalar case. This equality, obtained thanks to very crude approximations, 
has been conjectured to be valid for AE systems. This is supported by 
numerical results. (6) More precisely, only the inequality ~ ~ t + 2 v  can be 
shown. (8) A straightforward extension of this conjecture to any moment of 
the distribution is given by the formula 

yf (n)  = xo(n) + n (8) 

where the previous equality (7) is recovered for n = 2 since yr(2) = r/v and 
xc(2 ) = t/v. 

Such a relation has also been used implicitly in the limit when n tends 
to infinity (i.e., for the maximum stressed bonds) for the study of the 
rupture of elastic percolating structures. (16) However, only the case n = 2  
has ever been tested experimentally or numerically. 

Let us now examine the consequences of this conjecture for the 
different ensembles introduced previously. Using Eqs. (2), (3) and (5), (6), 
we obtain 

yce (n )=xe(n )  (8') 

y d ( n ) = x v ( n ) - - n  (8") 
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Let us first recall that for large n, xc (n )  tends to the fractal dimension of 
singly connected bonds, namely 1Iv. Therefore, for large n, 

y~(n)  = 1Iv + n + o(1) (9) 

yee(n)  = 1Iv -- [X~(2)/2] n + O(1) (9') 

yd (n )  = 1Iv -- [xc(2) + 1] n + o(1) (9") 

Now, concerning c~, we obtain 

~ f = ~ c +  1 (10) 

~oe=~e (t0 ')  

c~d = c~ v - 1 (10") 

and, whatever the ensemble considered, the value of f ( n )  for elastic 
problems is equal to the corresponding value for the random resistor 
network. Therefore, we conjecture that one goes from the scalar to the 
vector multifractal spectrum by simply translating the c~ axis by a constant 
amount  (1, 0, or - 1), depending on the ensemble chosen. 

This conjecture s t r i c to  sensus  applies to AE systems. However, it has 
been suggested by recent numerical simulations that the universality classes 
of CF and AE systems are identical. (12) Therefore, it should also apply to 
central-force percolation. In order to test both propositions, we studied 
numerically the CF case. 

5. CHOICE OF THE "BEST" ENSEMBLE 

The constant-current ensemble is certainly the best one in order to 
derive any critical exponent in the scalar case. This numerical observation 
comes from the fact that x c ( n )  is always finite for any n (i.e., the current in 
any bond is bounded by the current injected in the lattice and the fractal 
dimension of the bonds that carry this maximum current is nonzero). This 
is no longer the case for elasticity: Even if a unit force is applied onto the 
lattice, the maximum local force can be much larger due to lever-arm 
effects. Therefore, one is naturally led to use the possibility to define any 
ensemble which reproduces the constant-current ensemble property for 
elastic lattices, i.e., that the infinite-order scaling exponent is finite. In this 
spirit, let us introduce the a-ensemble, where the moments are computed 
according to 
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where: E is the elastic energy of a lattice and ( . . . )  denotes the average 
over lattices. Then we have 

y , ( n ) = x c ( n ) + n [ ( a -  1) xo(2) + 2 a -  1] (12) 

The "best" value of a, a*, is such that ya(n) remains finite for n large; thus, 

a* = [xo(2) + 1 ]/[xo(2) + 23 = (t + v)/~ (13) 

or numerically in two dimensions, a* 22/3 .  For this value of a*, one 
recovers ya*(n)= xc(n). This ensemble should be the one that exhibits the 
least fluctuations for large-order moments and therefore it is the one to be 
chosen for numerical investigations of scaling exponents (for large-order 
moments). However, for the numerical result we present in the next section, 
we did not use this ensemble, since we did not expect these results at the 
time of the numerical computations. Nevertheless, we can expect that 
among the three distinct ensembles recorded, (force, energy, displacement) 
the second one should be the more precise one for large moments since the 
divergence of the exponents for large n is weaker than for other ensembles 
[see Eq. (9)]. We indeed observed such an effect. 

6. R E S U L T S  

We now turn to the results of numerical simulations performed on 
central-force percolation lattices. 

We study triangular lattices where a fraction 1 - p  of bonds are cut at 
random. Each bond can be thought of as a spring freely rotating at its 
endpoints (i.e., nodes of the lattice). We consider L •  L lattices with 
periodic boundary conditions in one direction (say, horizontally) and the 
two horizontal borders are attached to two rigid bars onto which a dis- 
placement is imposed. The fraction p of bonds present is chosen to be 
0.642-I-0.002, in accordance with previous results (I2~ on the determination 
of the critical density p*. The distribution of forces on the lattice is 
obtained through a conjugate gradient method. The precision asked for 
was 10 - l~  for the usual stopping criterion (see, e.g., ref. 17). We checked 
the local equilibrium of each node and found that the maximum 
unbalanced force for the largest lattices considered (80 x 80) was less than 
10-8. We generated 500 30 x 30, 250 40 x 40, 200 50 x 50, 110 60 x 60, and 
50 80 x 80 lattices. For each lattice size, we recorded both histograms and 
moments of the force distribution. Each of these were computed in the 
three ensembles mentioned above: constant displacement, energy, and 
force. 
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( a )  

( b )  

Fig. 1. The rescaled histograms of the force distribution in the central-force percolation 
problem at threshold in three different ensembles: constant force (f), energy (e), and 
displacement (d). These histograms should all tend toward the "multifractal spectrum" of the 
force distribution f(~t). It is argued in the text that this spectrum can be obtained from that of 
the random resistor network at percolation threshold by a simple translation of the horizontal 
axis. 
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(c) 

Fig. 1 (cont&ued) 

Figure 1 shows,  for size 50, the three rescaled histograms, 
log[N(f,  L)]/logL plotted versus ~(f, L)=logf/log L. It is worth noting 
that the constant-force histogram is less well behaved for very large and 
very small forces. Due to lever-arm effects, the upper bound on the local 
microscopic force is equal to the force imposed on the lattice times the 
lattice size L. The fact that this upper limit increases with the lattice size is 
responsible for this poor behavior. This is equivalent to the divergence of 
the exponents yf(n) with increasing n. The two other ensembles share the 
property of having a fixed strict upper bound independent of lattice size. 
This imposes the constraint that the exponents yee(n) and ya(n) tend to 
either a constant or minus infinity when n tends to plus infinity. 

As mentioned in Section 2, an alternative way of obtaining the multi- 
fractal spectrum is to analyze the scaling of moments of forces. Figure 2 
shows the evolution of the log of the first five moments as a function of 
lattice size L in a log-log plot. These are shown for p = 0.641, for it appears 
that this value gave better results (the data show less curvature) than did 
p=0.642 for high-order moments. Due to the fact that most of these 
exponents are expected to be quite large, corrections to scaling appear to 
be suite important. In other words, the large moments (in particular) 
display a large cuvature in the log-log plot versus L. This is also known to 
be true for AE systems, where r/v, for example, the scaling exponent of the 
second moment, is still 0.5 below its estimated asymptotic value for 
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Fig. 2. Log-log plot of the moments of force distribution of the central-force percolation 
problem at threshold, versus the lattice size L, for the constant-energy ensemble. 

L =  100. m) The consequence of this fact is the large uncertainty in the 
exponents. This renders even more relevant the use of the best-adapted 
ensemble for a given moment.  

We computed the different exponents y(n) (reported in Table I) 
directly from the raw data, without using Eqqs. (5) and (6) relating them. 
We see, however, that these relations are fulfilled. Moreover, from the data 
concerning xc(n) (obtained numerically in a previous work(3)), we report 
also in Table I the value of the exponents y(n) expected from our conjec- 
ture, Eq. (8). We see that the agreement is fairly good. We note that even 
the exponents relative to the larger-order moments  are consistent with our 
prediction, although the error bars are large. 

In a similar spirit, we have plotted in Fig. 3 the apparent  exponents 
y(n) in the three ensembles as a function of n. The data are always close to 
their expected value (dotted line). The asymptotic behavior for large n is 
also satisfactory. Here, too, the value of p is chosen to be 0.641, rather 
0.642, since it gave better-quality fits. 

It had already been reported (t2) that the fractal dimension of the 
backbone y(0), identical in the three ensembles in CF percolation was very 
close to that of scalar percolation, x(0), as well as the elastic modulus, 
whose scaling seems identical for AE and CF systems. This can be inter- 
preted as indicating that angular elasticity in CF was recovered at an inter- 
mediate length scale, larger than that of a bond. Indeed, from a close 
analysis of the distribution of forces in one backbone, it can be seen that 
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o 2 4 6 "n 
Fig. 3. Scaling exponents of the nth moment y(n) versus n [Eq. (4)] for the three different 
ensembles considered in the text [constant force (f), energy (e), and displacement (d)] for the 
CF percolation problem. (O)  The exponents obtained from the numerical simulations. (.-.). 
The predictions of Eqs. (8), (8'), and (8"). The asymptotic (large-n) theoretical behaviors are 
the straight lines. For n =0, y(0) is the fractal dimension of the backbone, and y(2) is Uv, 0, 
-z/v, respectively, in the three ensembles f, e, and d. 

the torques are certainly responsible for the largest forces. However, due to 
the nonlocality of central force, it is not possible at the scale of bonds to 
picture the backbone by the nodes-links-blobs scheme (see; e.g., ref. 14). 
Therefore, the concept of singly connected bonds needs, at least, to be 
redefined. Our results indicate that, if we define them as the bonds that 
contribute to the large-order moments, they form a fractal set of dimen- 
sionality quite consistent with 1Iv. (Although we do not claim to estimate v 
in this way, since it would be obtained through the difference of two critical 
exponents of large-order moments, for which the accuracy is very limited.) 

7. C O N C L U S I O N  

We have presented arguments that the shape of the current 
distribution of the random resistor network at percolation threshold is 
identical to that of the force distribution in AE and CF elastic systems at 
their respective thresholds. The shapes of the f versus c~ curves of these 
problems are the same. The argument is supported by numerical studies of 
the CF percolation network and our data are good up to the fifth moment 
of the force distribution. Higher-order moments are very sensitive to 
statistical fluctuations, which, together with corrections to scaling, prevent 
any accurate determinations of critical exponents. 
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A P P E N D I X  

If a unit current is sent through the lattice, then the resistance R of the 
lattice, as well as the voltage drop V, are equal to the second moment of 
the current distribution: 

R=(~ i2)c  (A1) 

where parentheses with subscript c (resp. e and v) refer to the unit current 
(resp. dissipation and voltage) boundary condition. If now we submit the 
same lattice to a unit voltage drop, then the nth moment is given by 

Using the scaling relation (1), we can thus write 

L xv(~) oc L xo(n) . L xc(2) (A3) 

resulting in Eqs. (2). In a similar way, for the constant-dissipation ensemble 
we can write 

which gives Eqs. (3). 
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